Methylation mechanisms in pituitary tumorigenesis.
نویسندگان
چکیده
Methylation is essential for embryonic development, however aberrant methylation of CpG islands associated with the tumour suppressor genes (TSGs) and leading to gene silencing is found in numerous tumour types. The TSG p16/CDKN2A is involved in the genesis of many tumour types and frequent methylation of the CpG island of the p16/CDKN2A gene is associated with loss of protein expression in pituitary tumours. In addition, CpG sites are mutational hotspots and abnormal methylation patterns have been shown to lead to genetic instability, predisposing to, and preceding allelic loss. Although several studies of pituitary tumours have shown loss of genetic material at known and putative TSGs loci, studies of the retained alleles have revealed infrequent mutation. Equally, for several other TSGs no mechanisms have been described for their reduced expression. Methylation may represent a unifying theme, responsible in some cases for an absence or reduced expression and in other cases predisposing to allelic loss that may or may not encompass a TSG. In several tumour types treatment of tumours or their cognate cell lines with demethylating agents induces expression of previously methylated genes. Using the mouse corticotroph cell line AtT20 as a model system, transfection studies showed restoration of growth control through induction of ectopically expressed p16/CDKN2A. These effects were reversed by prior in vitro methylation of the constructs' CpG sites within the coding region of this gene. Methylation of an otherwise unmethylated CpG island renders a gene transcriptionally incompetent and clinically these genes represent attractive therapeutic targets since the gene is neither lost nor mutated, but may be reactivated. Future studies will no doubt describe more efficacious pharmacological interventions and identify the mechanisms responsible for the abnormal methylation patterns seen in tumours including those of pituitary origin.
منابع مشابه
An Overview of the Epigenetic Modifications of Gene Expression in Tumorigenesis
The five leading causes of cancer-related deaths are lung (1,760,000 deaths), colorectal (862,000 deaths), stomach (783,000 deaths), liver (782,000 deaths), and breast (627,000 deaths) cancers. Epigenetic changes can alter chromatin compaction, leading to the regulation of geneexpression without changing the primary DNA sequence.Epigenetic mechanisms are normally involved incellular processes s...
متن کاملSilencing of RASSF3 by DNA Hypermethylation Is Associated with Tumorigenesis in Somatotroph Adenomas
The pathogenic mechanisms underlying pituitary somatotroph adenoma formation, progression are poorly understood. To identify candidate tumor suppressor genes involved in pituitary somatotroph adenoma tumorigenesis, we used HG18 CpG plus Promoter Microarray in 27 human somatotroph adenomas and 4 normal human adenohypophyses. RASSF3 was found with frequent methylation of CpG island in its promote...
متن کاملThe Role of Genetic and Epigenetic Changes in Pituitary Tumorigenesis
Pituitary adenomas are one of the most common intracranial tumors. Despite their benign nature, dysregulation of hormone secretion causes systemic metabolic deterioration, resulting in high mortality and an impaired quality of life. Tumorigenic pathogenesis of pituitary adenomas is mainly investigated by performing genetic analyses of somatic mutations in the tumor or germline mutations in pati...
متن کاملPerformance of methylation and expression fluctuations of sonic hedgehog genes in gastric adenocarcinoma
Gastric cancer (GC) is considered as one of the most serious cancers, and in Iran, due to environmental factors in different regions, it has a high frequency. Apart from environmental factors, genetic and epigenetic ones also play a key role in the development of carcinogenesis of GC. In this regard, the study of functioning of the molecular mechanisms involved in the carcinogenesis and also tu...
متن کاملمروری بر متیلاسیون DNA و نقش آن در توموری شدن سلول های تیروئیدی
Epigenetic modification is one of the effective factors in tumorigenesis. Epigenetic processes, especially aberrant DNA methylation, play important role in thyroid cancer, and many tumor suppressor genes including PTEN, RASSF1A and TIMP3 are aberrantly methylated and silenced in thyroid cancer. Because of the specified pattern of DNA methylation in various tumor cells, it is suggested that thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrine-related cancer
دوره 6 4 شماره
صفحات -
تاریخ انتشار 1999